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Abstract 

Tracking studies of transition crossing in the Main 
Injector have shown that the Johnsen effect is the dominant 
cause of beam loss and emittance blow “LI. To su”“ress this 
effect one has to have control over al (d&persion bi the mo- 
mentum compaction factor a). Various x jump configurations 
are examined and the resulting changes in CQ are assessed. 
These results are further validated by comparison between the 
simulation and simple analytic a,-formulas derived for a 
model FODO lattice with full chromaticity compensation in 
the presence of an eddy current sextupole component. A 
scheme involving the introduction of a dispersion wave in the 
arcs of the Main Injector, around transition time, seems to be 
promising if one regards the strength of the eddy current sex- 
tuple family zu a” external “knob” to control values of a,. 

I. INTRODUCTION 

Tracking studies of transition crossing in the Main 
Injector and other Fennilab accelerators, “sing the code EWE, 
have shown that the Johnsen effect is the dominant cause of 
beam loss and emittance blow up [l, 21. This effect is rooted 
in the variation of y, the transition gamma with the momen- 
tum offset. A useful parameter chamctcrizing the strength of 
this effect [31 is the Johnsen time, T,. 

where ap,de?otes Ihe mu momentum spread. The Johnsen 
time, T,, IS dxectly related to the laltice parameter IX,, which 
is defined by the following equation 

&=a 
CO 

S+a S2+...., 0 I s=P, 
PO (2) 

where C, is the nominal closed orbit path length, and AC is 
the increase in path length for a” off momentum particle. The 
coefficients CY+ and a, are geometrical properties of the lattice, 
given by 
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where angle brackets ( ) denote averaging weighted by bend 
angle. The quantities being averaged are component dispersions 
in a momentum expansion of the total dispersion. That is, 

m) = Ilob) + Ill(S) s+ . . . . (4) 

explicitly showing the dependence of the dispersion on s, the 
accelerator azimuth. 

Clearly, if it is possible to measure and control a,, then it 
should be possible to make TI = 0, and ameliorate the damage 
done by the Johnscn effect [4], by setting 

3 1 a,=-~a,+~a,Z. (5) 

This may be true especially if al contxol is combined wilh RF 
gymnastic tricks, such “s the “se of a synchronous phase of 
90° and a second harmonic cavity, as now being discussed 
elsewhere [51. 

II. DISPERSION, q1 - DIFFERENTIAL 
EQUATION 

The horizontal closed orbit h(s) is found by solving the 
differential equation 

h”+*h+fihZ=G(l-&) (6) 

with periodic boundary conditions. A prime indicates differen- 
tiation with respect to s, K is the quadmpole strength, S is the 
sextupole strength, and G is the dipole bending strength. Here, 
h is expanded in a dispersion function series 

h = xc0 + q,, + ~~ 6 + . . . (7) 

The solution of the lowest order equation is trivial when there 
are no closed orbit perturbations, xc0 = 0, so that the remain- 
ing two equations become 

q,,“+K’l,,=G. (84 

~I’+Kq,=-G+K~o-S~oZ. (W 

According to Eq.(3), solution of the above equations yields 3 
direct knowledge of ai, and quantitatively identifies the major 
factors which affect cI1. 



III. FODO LAlTlCE WITH EDDY CURRENT case it is readily shown that the F and D sextupole strengths 

SEXTUPOLES 
are given by 

Suppose that an accelerator like the Main Injector is repre- 
sented as made up purely of FODO cells. The quadmpoles are 
thin, and there are no drift spaces. All of the half cell length L 
is filled with two identical dipoles of bend radius R, which are 
separated by a thin sextupole representing the field doe to vat- 
uum chamber eddy currents, induced during the ramp. There are 
also two thin chromatic correction sextupoles per half cell, 
immediately adjacent to the focusing and defocusing 
quadmpoles. The strength of the (half) quadmpales is *q, and 
of the sextopoles is g,, go, and g,, given by 

g, = 
G,AO qo’ 

4 
, I=F.D,E. 

Here, I$+ 
example r 

is the half cell phase advance, while S, and ‘lo” (for 
are the se&pole gradient and the lowest order disper- 

sion, at the F chromatic sextupole of thin length Al. Using 
these convenient definitions, it can be shown by solving 
Eqs.(R) that the matched values of the dispersion at F, E, and 
D?Uc 

fe 
gp=s- 4 g,* 

f 2-sz 
go=-?- - !4, 4 

Carrying out similar analysis as in the previous section one 
can generalize Eq.(l lb) as follows 

To test the results of Eq.(13) and to gain some insight 
into the prospect of controlling a, in tbe Main Injector, con- 
sider a lattice made up of 80 simple FODO cells. The lattice 
design code MAD was used to study the variation in closed or- 
bit path-length as a function of Ap/p, over a range from - 
0.003 to +0.003. Table I shows good qualitative agreemeot 
between the analytic predictions and simulated values of a, 
and a,. 

(f@ a0 (X lo-‘) a, (X 10-3) 
pedicted simulated predicted simulated 

uw 
2.956 2.956 3.213 3.332 
2.956 2.956 0.129 0.0244 
2.956 2.956 -0.638 -0.512 

L22- s qoD=-- 
R 29 (Iti) Table 1. Comparison of predicted and simulated u, and u,. 

When only the F and D sextupoles are turned on, at a strength If the sextupole family strength parameter ge isemployed 
to correct for f times the natural cbromaticity, it can easily be to control values of u:, the inevitable conclusion 1s that the 

shown that sensitivity to the famdy is too weak to reduce the Johnsen 
time to zero. Investigations are currently under way to find an 

LZ 1 s2 optical configuration that will significantly increase the 
ao=g~I1-~l. (lla) orthogonality of the three families beyond the unfortunate re- 

sults of the FODO lattice. An apparently promising candidate 

LZ 1 9 
involves the introduction of a dispersion wave in the arcs of 

a,=~~[l-f+~l. (Ilb) the Main Injector, around transition time. This begins to rc- 
semble an unmatched y, jump scheme [61 -except that the lat- 
tice perturbation can be introduced slowly, and that the needed 

IV. CONTROLLING aI WlTH SEXTUPOLES 
size of the dispersion wwe is expected to be relatively modest. 

The middle sextupole, of strength g,,,can be thought of in 
(at least) two ways. In the fust point of wew, it represents the 
sextupole field caused by eddy currents induced in the vacuum 
chamber of the dipoles. In the second point of view, g repre- 
sents a free knob with which a, can be controlled. For the 
sake of a semi-quantitative interpretation, suppose that the F 
and D sextupoles have their strengths set to compensate for the 
sum of the chromaticity induced by an eddy current sextupole 
of strength g,, plus f times the natural chromaticity. In this 

V. BEHAVIOR OF ,yt JUMP SCHEMES 

The satisfactory agreement between MAD simulations and 
analytic predictions reported in the previws section encourages 
the use of the program to study the behavior of momentum 
compaction factors for more realistic Main Injector lattices, 
where analytic results are no longer tractable. Here we consider 
two families of Main Injector lattices representing matched and 
unmatched 7, jump schemes. These schemes are described in 



detail elsewhere 161. It is important to check that the resulting 
change of a, does not greatly affect the Johnsen time T,, ex- 
tending the variation of transition crossing time for different 
parts of a bunch. 

The simulation places one thin eddy current sextupoles of 
strength g at the middle of each dipole, with a multipole 
strength [fl of bZ = 0.561 rnmz. Two families of chromatic 
sextupoles are used to compensate for both natural and eddy 
current chromaticities. It is assumed that the F and D sex- 
tupole snengths are not changed while jumping through transi- 

Figure 1 summarize the behavior of the marched scheme 
with bipolar (Ay, = * 0.65) and onipolar (Art = -1.3) excita- 
tions as well as an unmatched unipolar excitation _ a bipolar 
jump is not possible in this scheme. The linear character of 
a (6) in the realistic range 6 = -0.01 to +O.Ol is apparent in 
ai cases. 

One can conclude that eddy current sextupoles are not ex- 
pected to significantly affect transition crossing performance. 
Continuing investigations suggest that a modest dispersion 
wave significantly improves the orthogonality of three fami- 

tion. 

*P- 
4.0 I@ 

3.0 to-’ 

2.0 to-’ 

1.0 ID’ 

II 

-1.0 16 

-2.0 10-J 

-3.0 lcr’ 

4.0 lo-’ 

lies of sextupoles. 

VI. CONCLUSIONS Matched y,,ump Schemer a, 

General analytical expressions make it possible to evalu- 
ate how the critical Johnsen time depends on effects like eddy 
current sextupoles in the Main Injector dipoles, or on transi- 
tion jump configurations. In the simple case of a FOW lat- 
tice representation of the Main Injector, analytic results are in 
good quantitative agreement with a lattice design code. 

Examination of nominal Main Injector transition jump 
schemes reveals that a marched scheme produces little change 
in the Johnsen time, but that T, is more than doubled in the 
unmarched scheme. 

A thud family of sextupoles might be used to deliberately 
and practically control the Johnsen time, without modifying 
the nominal transition momentum. Two other sextupole fami- 
lies are used to achieve the desired net chromaticities. Such 
control, especially when used in conjunction with RF gymnas- 
tics, may make transition crossing so innocuous that it be- 

7 
c$ = a, + (a, + %I, - $p + O(SS 

0.015 -cm -o.ws 0 0.m 0.01 0.w comes unnecessary to include a transition jump in Main 
Injector designs. Mmlenwr O”581, S=~,p’po 

a -a P 0 “nmatchmi y,-,ump Sehwlm 
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Figure 1. Numerical simulation of r+, versus 6 carried out for 
various yt jump configurations. 


